Post your question in the Comment section below, and a GRE expert will answer it as fast as humanly possible.

- Video Course
- Video Course Overview
- General GRE Info and Strategies - 7 videos (free)
- Quantitative Comparison - 7 videos (free)
- Arithmetic - 42 videos
- Powers and Roots - 43 videos
- Algebra and Equation Solving - 78 videos
- Word Problems - 54 videos
- Geometry - 48 videos
- Integer Properties - 34 videos
- Statistics - 28 videos
- Counting - 27 videos
- Probability - 25 videos
- Data Interpretation - 24 videos
- Analytical Writing - 9 videos (free)
- Sentence Equivalence - 39 videos (free)
- Text Completion - 51 videos
- Reading Comprehension - 16 videos

- Study Guide
- Philosophy
- Office Hours
- Extras
- Prices

## Comment on

Least Common Multiple is 168## Mr Hanneson. is there any

thank you.

## Hi Abdul,

Hi Abdul,

Good question.

First review the following lessons:

Finding the GCD: https://www.greenlighttestprep.com/module/gre-integer-properties/video/832

Finding the LCM: https://www.greenlighttestprep.com/module/gre-integer-properties/video/834

Those videos will give you an idea of how to come up with values that satisfy certain conditions. That said, here are some quick pointers:

GREATEST COMMON DIVISOR (GCD)

If we know that the GCD of two numbers is k, then the two numbers can be k and any multiple of k

So, if the GCD of two numbers is 11, then the two numbers can be 11 & 22, or 11 & 55 OR 11 & 11, etc.

There are other strategies we can apply, but the above approach works in a pinch.

LEAST COMMON MULTIPLE (LCM)

If we know that the LCM of two numbers is q, then the two numbers can be q and any divisor of q

So, if the LCM of two numbers is 18, then the two numbers can be 18 & 6, or 18 & 1 OR 18 & 9, or 18 & 18, etc.

Cheers,

Brent

## I have to say Mr Hanneson,

Thank you very much

Cheers,

Abdul Hannan.

## Thanks Abdul! That's nice of

Thanks Abdul! That's nice of you to say.

Cheers,

Brent

## HI Brent,

plz can you help me out with in understanding the question.

1. https://gre.myprepclub.com/forum/the-number-of-multiples-of-3-between-102-and-729-inclusive-8843.html

2. How many multiples of 5 are there between 81 and 358

3. How many multiples of 7 are there between 21 and 343, exclusive .

I am really confused with the wordings inclusive , between and exclusive.

However I derived from the following equation Multiples of 5 = {(Last multiple -First multiple)/5} +1

but the inclusive , between and exclusive does all mean the same?

## Question link: https:/

Question link: https://gre.myprepclub.com/forum/the-number-of-multiples-of-3-between-10...

INCLUSIVE means we INCLUDE the numbers on either side of the list of values.

So, the integers from 3 to 8 INCLUSIVE are: 3, 4, 5, 6, 7, and 8

Aside: It's grammatically incorrect to use BETWEEN and INCLUSIVE (e.g., the integers BETWEEN 3 and 8 INCLUSIVE).

The generally used form is: "The integers FROM 3 to 8 INCLUSIVE"

EXCLUSIVE means BETWEEN (in fact, most GRE resources will use BETWEEN). In other words, we DON'T INCLUDE the numbers on either side of the list of values.

So, the integers BETWEEN 3 and 8 are: 4, 5, 6, and 7

In general, use the formula for INCLUSIVE.

That is: Multiples of k = (Last multiple of k - First multiple of k)/k} +1

We get:

1. The number of multiples of 3 between 102 and 729, inclusive

First multiple = 3. Last multiple = 729

Number of multiples of 3 = (729 - 102)/3 + 1

2. How many multiples of 5 are there BETWEEN 81 and 358?

First multiple = 85. Last multiple = 355

Number of multiples of 5 = (355 - 85)/5 + 1

3. How many multiples of 7 are there between 21 and 343, EXCLUSIVE?

This is the same as "How many multiples of 7 are there BETWEEN 21 and 343?"

First multiple = 28. Last multiple = 336

Number of multiples of 7 = (336 - 28)/7 + 1

Cheers,

Brent

## Thanks Brent,

In any case we have to follow : Multiples of k = (Last multiple of k - First multiple of k)/k} +1

Only difference, choosing numbers in the given set, whether the first and the last term are included or excluded

## That's correct.

That's correct.

## Thanks Brent

## Hi Brent,

If there are 3 number, how to apply to use this formular?

## As far as I know, there isn't

As far as I know, there isn't a convenient formula for 3 values.

More importantly, the GRE won't test you on this.

Cheers,

Brent

## I am trying to think of some

## As I mentioned in the

From the GCD part:

G = 24a

H = 24b

From the LCM part:

168/(24a) = b

a*b = 7

Now we have enough information to solve the problem.

G*H = 24a * 24b

G*H = 24*24*ab

We know that ab = 7

So,

GH = 24*24*7

GH/48 = (24*24*7)/48 = 84

## Beautiful solution!

Beautiful solution!